skip to main content


Search for: All records

Creators/Authors contains: "Piaggio, Antoinette J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The prevalence of avian haemosporidian parasites and the factors influencing infection in the Colorado Rocky Mountains are largely unknown. With climate change expected to promote the expansion of vector and avian blood parasite distributions, baseline knowledge and continued monitoring of the prevalence and diversity of these parasites is needed.

    Methods

    Using an occupancy modeling framework, we conducted a survey of haemosporidian parasite species infecting an avian community in the Colorado Rocky Mountains in order to estimate the prevalence and diversity of blood parasites and to investigate species-level and individual-level characteristics that may influence infection.

    Results

    We estimated the prevalence and diversity of avian Haemosporidia across 24 bird species, detecting 39 parasite haplotypes. We found that open-cup nesters have higherHaemoproteusprevalence than cavity or ground nesters. Additionally, we found that male Ruby-crowned Kinglets, White-crowned Sparrows, and Wilson’s Warblers have higherHaemoproteusprevalence compared to other host species.Plasmodiumprevalence was relatively low (5%), consistent with the idea that competent vectors may be rare at high altitudes.

    Conclusions

    Our study presents baseline knowledge of haemosporidian parasite presence, prevalence, and diversity among avian species in the Colorado Rocky Mountains and adds to our knowledge of host–parasite relationships of blood parasites and their avian hosts.

    Graphical Abstract 
    more » « less
  2. Abstract

    Invasive species pose a major threat to biodiversity on islands. While successes have been achieved using traditional removal methods, such as toxicants aimed at rodents, these approaches have limitations and various off-target effects on island ecosystems. Gene drive technologies designed to eliminate a population provide an alternative approach, but the potential for drive-bearing individuals to escape from the target release area and impact populations elsewhere is a major concern. Here we propose the “Locally Fixed Alleles” approach as a novel means for localizing elimination by a drive to an island population that exhibits significant genetic isolation from neighboring populations. Our approach is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling, we explore the feasibility of this approach and the degree of localization that can be achieved. We show that across a wide range of parameter values, escape of the drive to a neighboring population in which the target allele is not fixed will at most lead to modest transient suppression of the non-target population. While the main focus of this paper is on elimination of a rodent pest from an island, we also discuss the utility of the locally fixed allele approach for the goals of population suppression or population replacement. Our analysis also provides a threshold condition for the ability of a gene drive to invade a partially resistant population.

     
    more » « less